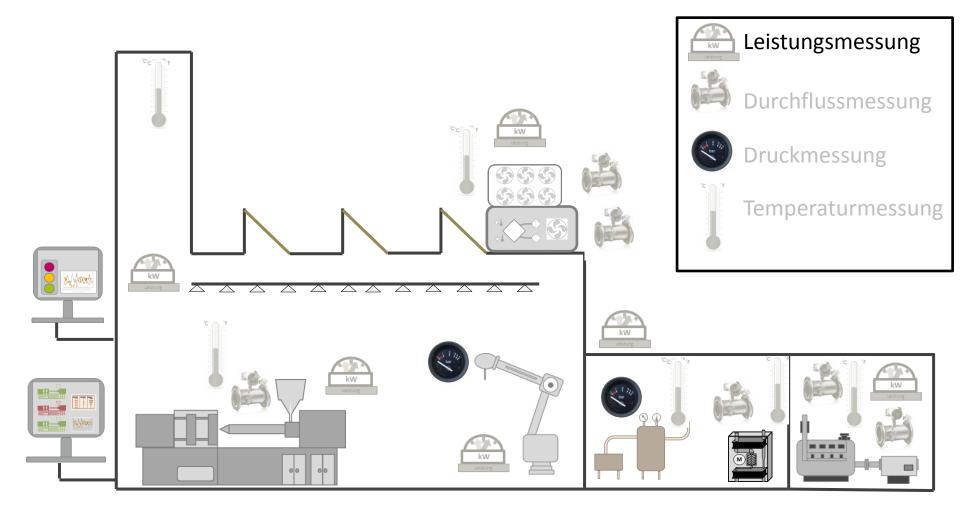
MESSEN VON STOFF- UND ENERGIESTRÖMEN DRUCKMESSUNG

Prof. Dr.-Ing. Jens Hesselbach

Wintersemester 2016/2017



Inhalte der Vorlesung

- Historie / Einführung
- Grundlagen
- Verfahren der Druckmessung
 - Direktanzeigende Manometer
 - Dehnungsmessstreifen
 - Piezoresistive, kapazitive und induktive Messungen
- Statische und dynamische Druckmessung
- Anwendungsbeispiele

Messtechnik im Industriebetrieb

Druckmessung

Historie / Einführung

DRUCKMESSUNG

Einführung

- Der Druck ist nach der Temperatur für verfahrenstechnische Prozesse die wichtigste Größe zur Bestimmung des Systemzustandes
- Für die Druckmessung gilt, dass es keinen universellen Sensortyp gibt
- Jedes Verfahren weist bei bestimmten Anwendungen Vorteile auf und ist dafür an anderer Stelle nicht empfehlenswert
- Messbereich, Genauigkeit, Preis, Temperaturbereich und Baugröße des Sensors sind nur einige Auswahlkriterien

Grundlagen

DRUCKMESSUNG

Definition Druck

Der Druck (Formelzeichen: p) ist die auf ein infinitesimal kleines Flächenelement dA wirkende Kraft dF:

$$oldsymbol{p} = rac{oldsymbol{d} F}{oldsymbol{d} A}$$

Bei einem über der Fläche A konstanten Druck gilt:

$$oldsymbol{p} = rac{oldsymbol{F}}{A}$$

Einheiten

- Die SI-Einheit für den Druck ist Pascal (Pa): $\mathbf{1}Pa = \mathbf{1}\frac{R}{m^2}$
- Die große praktische Bedeutung der Größe "Druck" spiegelt sich in der Vielzahl von abgeleiteten (und zum Teil veralteten) Einheiten wieder
- Dabei werden diese in verschiedenen Gebieten von Wissenschaft und Technik angewendet

• Weitere Umrechnungen:

1 hPa = 1 mbar

 $1 \text{ Pa} = 1 \text{ N/m}^2$

1 mmHg = 1 Tor

 $1 \text{ kp/cm}^2 = 1 \text{ at}$

at = technische Atmosphäre atm = physikalische Atmosphäre

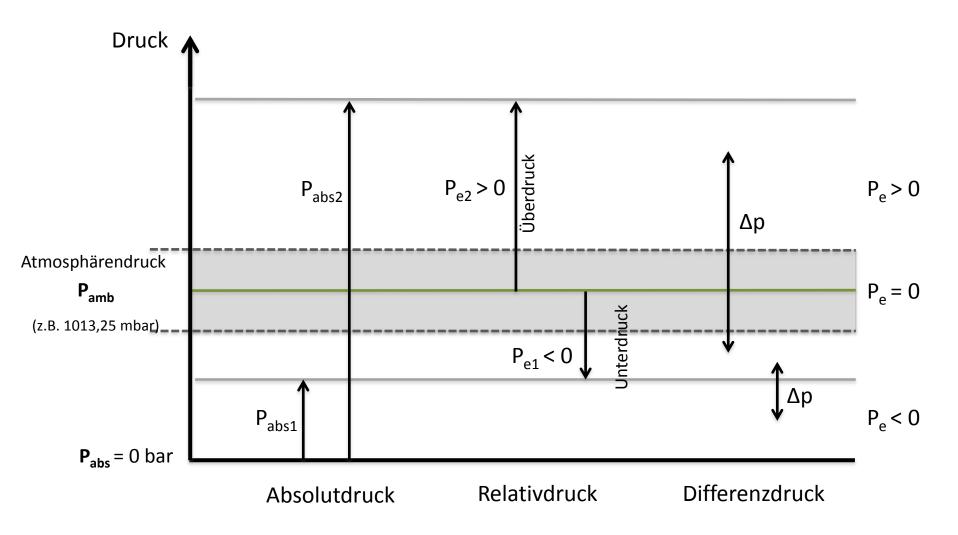

		SI-Einheiten			Technische Einheiten		
		bar	mbar	Pa	mmHg	Kp/cm²	atm
	1 bar	1	10³	10 ⁵	750,064	1,01972	0,986923
	1 mbar	10 ⁻³	1	100	750,064 x10 ⁻³	1,01972 x10 ⁻³	0,986923 x10 ⁻³
	1 Pa	10 ⁻⁵	0,01	1	7,50064 x10 ⁻³	10,1972 x10 ⁻⁶	9,86923 x10 ⁻⁶
-	1 mmHg	1,3322 x10 ⁻³	1,3322	133,322	1	1,35951 x10 ⁻³	1,31579 x10 ⁻³
1	L kp/cm²	0,980665	0,980665 x10³	98,0665 x10³	735,561	1	0,967841
	1 atm	1,01325	1,01325 x10 ³	1,01325 x10 ⁵	760	1,03323	1

Tabelle: Einheiten-Umrechnungen

Einheiten

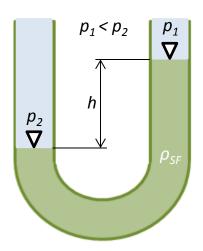
- Aus der Definition von p wird die Analogie zur mechanischen Größe "Kraft" deutlich. Es ist also naheliegend, dass die Druckmessung auf die Messung einer Kraft zurückzuführen ist
- Es werden folgende Druckpotenziale unterschieden:
 - Absolutdruck: Der Druck wird gegenüber dem Vakuum, also p = 0 Pagemessen
 - Überdruck/Unterdruck: Der Druck wird relativ zum Atmosphärendruck (ca. p = $10^3 \times 101$ Pa) angegeben
 - Differenzdruck: Die Ausgangsgröße des Sensors ist proportional zur Differenz von zwei Drücken

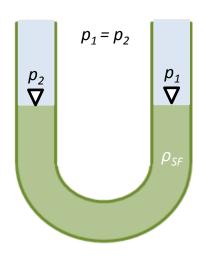
Druckarten

Quelle: angelehnt an: http://www.first-sensor.com/cms/upload/images_others/portal_Druckarten.jpg

U-Rohr Manometer I

- U-Rohre stellen eine sehr einfache Möglichkeit der Druckmessung dar, die zu Vergleichs- und Kontrollzwecken eingesetzt werden
- Sie bestehen aus einem mit einer Flüssigkeit der Dichte ρ gefüllten U-Rohrs
- Sie können nur zur Messung kleinerer Drücke eingesetzt werden


U-Rohr Manometer II


 Dabei wird die als Grundgleichung der Hydrostatik bezeichnete Formel verwendet:

$$p = p_0 + \rho g h$$

- Sie besagt, dass sich der Druck in einer Flüssigkeit zusammensetzt aus:
 - dem Druck an der Oberfläche und
 - einem Anteil, der nur von der Dichte der
 - Flüssigkeit und der Höhe der Säule abhängt.
- Damit gilt für das skizzierte Beispiel:

$$p_1 - p_2 = \rho g h$$

Abb.: U-Rohr Manometer

Quelle: https://de.wikipedia.org/wiki/ U-Rohr-Manometer#/media/File:Manometer_eben.png

Normen

- DIN EN 472, Druckmessgeräte Begriffe
- DIN EN 837-1, Druckmessgeräte mit Rohrfedern; Teil 1: Maße, Messtechnik,
 Anforderungen und Prüfung
- DIN EN 837-2, Druckmessgeräte; Teil 2: Auswahl- und Einbauempfehlungen für Druckmessgeräte
- DIN EN 837-3, Druckmessgeräte mit Platten- und Kapselfedern; Teil 3: Maße,
 Messtechnik, Anforderungen und Prüfung

DIREKTANZEIGENDE MANOMETER

Direktanzeigende Manometer

- Unter dieser Bezeichnung laufen die Messgeräte, bei denen sich mechanische Größen unter Druckeinwirkung ändern
- Sie liefern damit primär nur eine Vor-Ort-Anzeige ohne elektrisches Signal
- Durch die Nutzung mechanischer Größen entfällt bei diesen Sensoren die Notwendigkeit zur Bereitstellung einer elektrischen Hilfsenergie

Federmanometer I

- Häufigste Methode zur Vor-Ort-Anzeige des Drucks
- Vielzahl verschiedener Federformen
- Die grundsätzliche Gemeinsamkeit liegt in der Ausnutzung der elastischen Verformung einer Feder unter Druckeinwirkung
- Durch eine entsprechende Mechanik wird diese Verformung auf einen Zeiger übertragen und als analoge Größe angezeigt

Federmanometer II

Bourdonprinzip

- In fast allen Druckuhren ist die nach ihrem Erfinder benannte Bourdonfeder enthalten
- rund gebogene Feder ovalen Querschnitts, die sich unter Druckeinwirkung aufbiegt
- Häufige Verwendung bei hohen Drücken (bis etwa 1000 bar)
- Aufgrund der Krümmung ist die Außenfläche größer als die Innenfläche
- Innerhalb der Rohrfeder sind die Drücke gleich, nach der Formel F = p*A sind die Kräfte auf der Außenfläche größer
- es kommt zur Aufbiegung der Rohrfeder

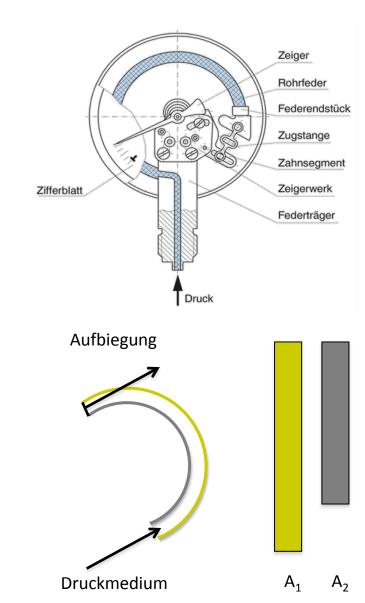


Abb. oben: Bourdonfeder

Quelle: http://blog.wika.de/files/2015/07/rohrfeder-manometer-funktion neu.jp

Abb. unten: Bourdonprinzip

Plattenfedermanometer

- Plattenfedermanometer weisen eine ähnliche Mechanik zur Umwandlung der Auslenkung in eine Drehbewegung des Zeigers auf
- Dieser Messgerätetyp deutet bereits auf die Messverfahren hin, die eine elektrische Größe als Ausgangssignal zur Verfügung stellen

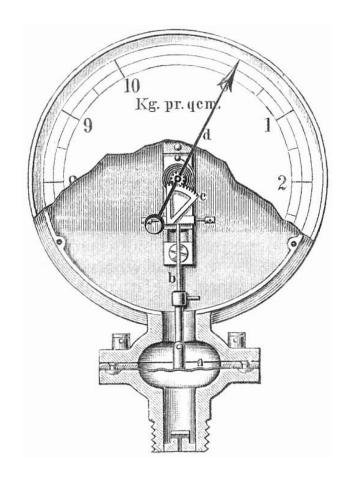
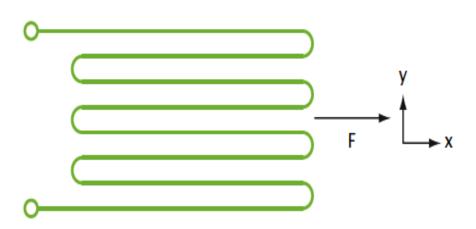


Abb.: Plattenfedermanometer

Quelle: http://images.zeno.org/Meyers-1905/I/big/130240a.jpg

Bewertung Federmanometer


Vorteile	Nachteile		
Große Stückzahlen	Nur Druckanzeige am Messort		
Billig und robust	möglich		
Einfache Bedienung	 Gemessene Größe kann nicht übertragen bzw. weiterverarbeitet 		
Weite Palette von Messbereichen	werden		

→ Im Rahmen der modernen Prozessleittechnik werden Drucksensoren benötigt, die ihre Information als elektrische Größe zur Verfügung stellen

DEHNUNGSMESSSTREIFEN

Dehnungsmessstreifen I

- Vielen Typen von Druckmessgeräten ist die durch Druck ausgelenkte Membran gemeinsam
- Unter Dehnungsmessstreifen (DMS) versteht man kleine, metallische Leiterbahnen mit mäanderförmiger Struktur (mm-Bereich)

Abb.: Dehnungsmessstreifen

Quelle: Hesselbach et. al. (2012)

Abb.: Dehnungsmessstreifen

Quelle: http://www.itwissen.info/bilder/dehnungsmessstreifen-foto-telemotorix-dotde.png

Dehnungsmessstreifen II

- Durch Einwirken einer äußeren Kraft F vergrößert sich die Länge des Leiters und damit sein elektrischer Widerstand
- Aufgrund der Mäanderform des Leiters wird eine Richtungssensitivität des DMS erreicht
- Die Kräfte in *y*-Richtung verursachen nur vernachlässigbar kleine Widerstandsänderung
- DMS werden eingesetzt zur Messung von Kräften, Dehnungen und Spannungen
- Sie stellen das am häufigsten eingesetzte Messprinzip mit elektrischem Ausgangssignal dar

Dehnungsmessstreifen III

Erzeugung eines elektrischen Signals

- Eine so genannte DMS-Rosette mit 3 Widerständen wird auf eine Membran aufgeklebt
- Unter Druck verformt sich mit der Membran auch der DMS
- Durch Verschaltung dieser Widerstände in Form einer Wheatstonebrücke steht mit der Diagonalspannung der Brücke ein Signal zur Verfügung
- Dieses Signal steht in eindeutigem Zusammenhang zum Druck auf die Membran

Bewertung von Dehnungsmessstreifen

Vorteile	Nachteile		
Unempfindlich gegen Druckspitzen	Relativ kleines Ausgangssignal		
Einsetzbar bei hohen Drücken	Bei kleinen Drücken nicht		
Auch in Hydrauliksystemen verwendbar	einsetzbar		

PIEZORESISTIVE, KAPAZITIVE UND INDUKTIVE MESSUNGEN

Piezoresistive Drucksensoren I

- Wird ein Siliziumkristall einer Druckkraft ausgesetzt, ändert sich sein spezifischer Widerstand (gr.: piezein = drücken)
- Beim piezoresistiven Verfahren wird der Widerstand von Widerstandspfaden, die in einen Siliziumkristall eindiffundiert sind, gemessen
- Durch diese Technik sind kleinere Baugrößen und höhere Empfindlichkeiten möglich

Piezoresistive Drucksensoren II

- Bei den piezoresistiven Verfahren wird der Druck nicht direkt, sondern über eine Füllflüssigkeit (bsp. Silikonöl) auf die Messmembran aufgetragen
- Durch die Temperaturabhängigkeit der Übertragungsflüssigkeit wird das Verfahren durch Änderungen der Temperatur beeinflusst, welche kompensiert werden muss
- Neben hohen Genauigkeiten und kleinen Baugrößen sind schnelle Reaktionszeiten und ein weiter Messbereich die Vorteile von piezoresistiven Drucksensoren

Abb.: Drucksensoren

Quelle: https://www.keller-holland.nl/pictures/products/serie10eexd.gif

Kapazitive Drucksensoren I

- Sehr empfindliche Messmethode
- Die Kapazität eines Plattenkondensators der Fläche A berechnet sich aus:

$$C = \varepsilon_o * \varepsilon_r * \frac{A}{d}$$

- Wird durch Druckeinwirkung der Plattenabstand d verändert, so ändert sich auch die Kapazität
- Auswertung der Änderungen üblicherweise durch Wechselstrommessbrücken

Größe	Beschreibung	
ε_o	el. Feldkonstante (8,85419*10 ⁻¹²)	C/Vm
ε_r	Dielektrizitätszahl	-

Kapazitive Drucksensoren II

- Sensor besteht aus einer Scheibe mit Metallbeschichtungen
 - → bilden einen Messkondensator
- Bei Veränderung des Messdrucks p2 verändert sich aufgrund der elastischen Durchbiegung der Membran auch die Kapazität Cp
- Wenn an P_1 Atmosphärendruck beaufschlagt wird handelt es sich um eine Überdruckmessung
- Wird stattdessen ein zweiter veränderlicher Druck gewählt, so verfügt man über ein Differenzdruckmessgerät mit kapazitativem Abgriff

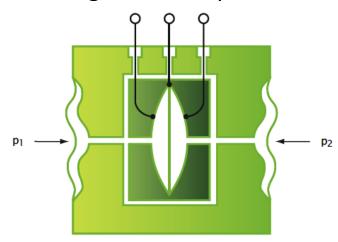
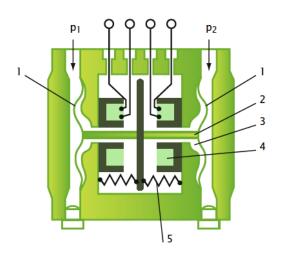



Abb.: Prinzipieller Aufbau kapazitiver Drucksensor (Überdruckmesswerk mit kapazitivem Abgriff)

Quelle: Hesselbach et. al. (2012)

Induktive Verfahren I

- Statt kapazitive auch induktive Auslenkung der Membran möglich
- Die Membran (1) hat die Aufgabe, den Sensor vom Prozess zu trennen und den Druck in die mechanische Größe Dehnung umzusetzen
- Bei Auftreten einer Druckdifferenz p1-p2 verschiebt die Membran die Mittelachse (2) in die Ölfüllung (3), woraus eine Änderung der Induktivität der Spulen resultiert
- Ausgewertet wird diese Information üblicherweise unter Verwendung von Wechselstrommessbrücken

- Membran
- 2. Mittelachse
- 3. Ölfüllung
- 4. Spule
- 5. Feder

Abb.: Prinzipieller Aufbau induktiver Differenzdrucksensor

Quelle: Hesselbach et. al. (2012)

Induktive Verfahren II

- Induktive Geber nutzen meist einen der folgenden Effekte:
 - Die Induktivität einer Spule ändert sich durch Einbringen oder Entfernen von Eisen im Kern
 - Der Kopplungsgrad zwischen zwei Spulen ist abhängig vom Material des Spulenkerns. Verändert sich die Eisenmenge im Kern, so ändert sich auch die in der Sekundärspule induzierte Spannung (Differential-Transformator)

Übersicht der Messverfahren

Druckaufnehmer	Genauigkeit	Empfindlichkeit in mV/hPa	Messbereich in bar	
DMS	0,1 – 1 %	1 – 10	1 – 3500	
Piezoresistiv	0,1 – 1 %	10 – 100	1 – 150	
Kapazitiv	0,05 – 0,5 %	1-5	0,01 – 500	
Induktiv	0,5 – 1 %	0,1 - 1	0,01 – 200	

Quelle: Hesselbach et. al. (2012)

STATISCHE UND DYNAMISCHE DRUCKMESSUNG

Druckarten

• In fließenden Medien gibt es drei verschiedene Druckarten: Statischer Druck p_{st_i} dynamischer Druck p_{dyn} und Gesamtdruck p_{ges}

• Es gilt: $p_{ges} = p_{dyn} + p_{stat}$

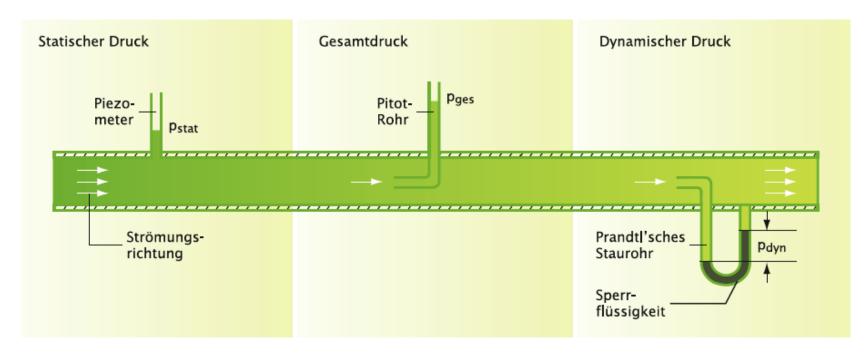


Abb.: Messung unterschiedlicher Drücke in Strömungen

Quelle: Hesselbach et. al. (2012)

Druckarten

Gesamtdruck

 Der Gesamtdruck in einer strömenden Flüssigkeit ist die Summe aus dem statischen und dem dynamischen Druck

$$p_{ges} = p_{dyn} + p_{stat}$$

Dynamischer Druck

- Wird durch die Strömungskraft der Flüssigkeit hervorgerufen
- Wirkt nur in Strömungsrichtung, auch Staudruck oder Fließdruck genannt
- Ruht die Flüssigkeit, dann ist die Geschwindigkeit und damit auch der dynamische Druck gleich null

$$p_{dyn} = \frac{\rho}{2} * v^2$$

Statischer Druck

- Er wird durch eine, auf die Flüssigkeit wirkende Zusammendrückkraft erzeugt
- Dabei breitet er sich in der Flüssigkeit in alle Richtungen gleich aus

Messverfahren

Piezometer

 Liegt die Messstelle senkrecht zur Strömungsrichtung, so wird nur der statische Druck gemessen

Pitot-Rohr

- Befindet sich die Messstelle in Strömungsrichtung, so wird der Gesamtdruck gemessen, der sich aus dem dynamischen und dem statischen Druck zusammensetzt
- ragt in das Rohr hinein und hat eine 90° Biegung, so dass die Messstelle gegen die Strömungsrichtung steht

Prandtl'sches Staurohr

 Den dynamischen Druck allein misst man durch eine Druckdifferenzmessung, es ist eine Kombination aus einem Pitot-Rohr und einem Piezometer

VIELEN DANK

Quellen (Auszug)

- Hoffmann, J.: Taschenbuch der Messtechnik. Fachbuchverlag Leipzig, im Carl Hanser Verlag, München Wien, 3. Auflage, 2002.
- Hesse, S., Schnell, G.: Sensoren für die Prozess- und Fabrikautomation. Vieweg Verlag, Wiesbaden, 3. Auflage, 2004.
- Hesselbach et. al.: Energie- und klimaeffiziente Produktion Grundlagen,
 Leitlinien und Praxisbeispiele. Springer Vieweg Verlag, 1. Auflage 2012.